Abstract
The aim of this paper is to study fuzzy extensions of some covering properties defined by L. Kalantan as a modification of some kinds of paracompactness-type properties due to A.V.Arhangels'skii and studied later by other authors. In fact, we obtain that: if (X,T) is a topological space and A is a subset of X, then A is Lindelöf in (X,T) if and only if its characteristic map χ_{A} is a Lindelöf subset in (X,ω(T)). If (X,τ) is a fuzzy topological space, then, (X,τ) is fuzzy Lparacompact if and only if (X,ι(τ)) is L-paracompact, i.e. fuzzy L-paracompactness is a good extension of L-paracompactness. Fuzzy L₂-paracompactness is a good extension of L₂- paracompactness. Every fuzzy Hausdorff topological space (in the Srivastava, Lal and Srivastava' or in the Wagner and McLean' sense) which is fuzzy locally compact (in the Kudri and Wagner' sense) is fuzzy L₂-paracompact
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.