Abstract

Bayesian inference deals with a-priori information in statistical analysis. However, usually Bayesians assume that all kind of uncertainty can be modeled by probability. Unfortunately, this is not always true due to how uncertainties are defined. The uncertainty of measurement results of continuous quantities differs from probabilistic uncertainty. Individual measurement results also contain another kind of uncertainty, which is called fuzziness. The combination of fuzziness and stochastic uncertainty calls for a generalization of Bayesian inference, i.e. fuzzy Bayesian inference. This chapter explains the generalized Bayes’ theorem in handling fuzzy a-priori information and fuzzy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.