Abstract

We show that a map in several variables on a prime ring satisfying an identity of polynomial type must be a quasi-polynomial (i.e., a polynomial in noncommutative variables whose coefficients are Martindale centroid valued functions)provided that the ring does not satisfy a standard identity of low degree. Obtained results have applications to the study of Lie maps of prime rings (Lie ideals of prime rings and skew elements of prime rings with involution)and to the study of Lie-admissible algebras and Lie homomorphisms of Lie algebras of Poisson algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.