Abstract

We provide some examples of irregular fully idempotent homomorphisms and study the pairs of abelian groups A and B for which the homomorphism group Hom(A, B) is fully idempotent. We show that if B is a torsion group or a mixed split group and if at least one of the groups A or B is divisible then the full idempotence of the homomorphism group implies its regularity. If at least one of the groups A or B is a reduced torsion-free group and their homomorphism groups are nonzero then the group is not fully idempotent. The study of fully idempotent groups Hom(A, A) comes down to reduced mixed groups A with dense elementary torsion part.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.