Abstract

Mumford's well-known characterization of the hyperelliptic locus of the moduli space of ppavs in terms of vanishing and non-vanishing theta constants is based on Neumann's dynamical system. Poor's approach to the characterization uses the cross ratio. A key tool in both methods is Frobenius' theta formula, which follows from Riemann's theta formula. In a 2004 paper Grushevsky gives a different characterization in terms of cubic equations in second order theta functions. In this note we first show the connection between the methods by proving that Grushevsky's cubic equations are strictly related to Frobenius' theta formula and we then give a new proof of Mumford's characterization via Gunning's multisecant formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.