Abstract

In the present work, the friction and wear behavior of microwave-clad WC-12Co cermet was examined using a pin-on-disk tribometer as per ASTM G99. Microwave clads were tested against an EN-31 countersurface in unlubricated conditions. The WC-12Co clads were developed using an industrial microwave applicator at 2.45 GHz and 1.4 kW. The influence of varying normal load on the tribological characteristics of the microwave-induced clads have been investigated. Responses of the WC-12Co microwave clads and AISI 304 stainless steel substrate were monitored and the resulting wear was subsequently analyzed in terms of wear rate, pressure–velocity–time (p-v-t) characteristics, and friction coefficient. The worn surfaces of the WC-12Co microwave clad and AISI 304 substrate were studied using scanning electron microscope. Wear debris was analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The developed clads exhibit significant resistance to wear attributable to the microwave-induced dense microstructure and material properties. The wear rate and friction coefficient were reduced by 67 and 56%, respectively for WC-12Co microwave clad compared to that of the AISI 304 substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call