Abstract
In this paper, an intelligence method based on single layer legendre neural network is proposed to solve fractional optimal control problems where the dynamic control system depends on Caputo fractional derivatives. First, with the help of an approximation, the Caputo derivative is replaced to integer order derivative. According to the Pontryagin minimum principle for optimal control problems and by constructing an error function, an unconstrained minimization problem is then defined. In the optimization problem, trial solutions are used for state, costate and control functions, where these trial solutions are constructed by using Legendre polynomial based functional link artificial neural network. In the following, error back propagation algorithm is used for updating the network parameters (weights). At the end, some illustrative examples are included to demonstrate the validity and capability of the proposed method. Three applicable examples about chaos control of Malkus waterwheel, finance fractional chaotic models and fractional-order geomagnetic field models are also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.