Abstract
Given a fractional Brownian motion (fBm) with Hurst index \({H\in(0,1)}\) , we associate with this a special family of representations of Cuntz algebras related to frequency domains and wavelets. Vice versa, we consider a pair of Haar wavelets satisfying some compatibility conditions, and we construct the covariance functions of fBm with a fixed Hurst index. The Cuntz algebra representations enter the picture as filters of the associated wavelets. Extensions to q-dependent covariance functions leading to a corresponding fBm process will also be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.