Abstract
We study diophantine properties of a typical point with respect to measures on $\mathbb{R}^n .$ Namely, we identify geometric conditions on a measure μ on $\mathbb{R}^n $ guaranteeing that μ-almost every ${\bf y}\,\in\,\mathbb{R}^n $ is not very well multiplicatively approximable by rationals. Measures satisfying our conditions are called ‘friendly’. Examples include smooth measures on nondegenerate manifolds; thus this paper generalizes the main result of [KM]. Another class of examples is given by measures supported on self-similar sets satisfying the open set condition, as well as their products and pushforwards by certain smooth maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.