Abstract

This paper is focused on higher order differentiation of Fourier series of functions. By means of Stokes's transformation, the recursion relations between the Fourier coefficients in Fourier series of different order (partial) derivatives of the functions as well as the general formulas for Fourier series of higher order (partial) derivatives of the functions are acquired. And then, the sufficient conditions for term‐by‐term differentiation of Fourier series of the functions are presented. These findings are subsequently used to reinvestigate the Fourier series methods for linear elasto‐dynamical systems. The results given in this paper on the constituent elements, together with their combinatorial modes and numbering, of the sets of coefficients concerning 2rth order linear differential equation with constant coefficients are found to be different from the results deduced by Chaudhuri back in 2002. And it is also shown that the displacement solution proposed by Li in 2009 is valid only when the second order mixed partial derivative of the displacement vanishes at all of the four corners of the rectangular plate. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.