Abstract
We initiate research on the multiple distance 2 labeling of graphs in this paper.Let n,j,k be positive integers. An n-foldL(j,k)-labeling of a graph G is an assignment f of sets of nonnegative integers of order n to the vertices of G such that, for any two vertices u,v and any two integers a∈f(u), b∈f(v), |a−b|≥j if uv∈E(G), and |a−b|≥k if u and v are distance 2 apart. The span of f is the absolute difference between the maximum and minimum integers used by f. The n-fold L(j,k)-labeling number of G is the minimum span over all n-fold L(j,k)-labelings of G.Let n,j,k and m be positive integers. An n-fold circular m-L(j,k)-labeling of a graph G is an assignment f of subsets of {0,1,…,m−1} of order n to the vertices of G such that, for any two vertices u,v and any two integers a∈f(u), b∈f(v), min{|a−b|,m−|a−b|}≥j if uv∈E(G), and min{|a−b|,m−|a−b|}≥k if u and v are distance 2 apart. The minimum m such that G has an n-fold circular m-L(j,k)-labeling is called the n-fold circular L(j,k)-labeling number of G.We investigate the basic properties of n-fold L(j,k)-labelings and circular L(j,k)-labelings of graphs. The n-fold circular L(j,k)-labeling numbers of trees, and the hexagonal and p-dimensional square lattices are determined. The upper and lower bounds for the n-fold L(j,k)-labeling numbers of trees are obtained. In most cases, these bounds are attainable. In particular, when k=1 both the lower and the upper bounds are sharp. In many cases, the n-fold L(j,k)-labeling numbers of the hexagonal and p-dimensional square lattices are determined. In other cases, upper and lower bounds are provided. In particular, we obtain the exact values of the n-fold L(j,1)-labeling numbers of the hexagonal and p-dimensional square lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.