Abstract

In this paper we continue the study of locally checkable problems under the framework introduced by Bonomo-Braberman and Gonzalez in 2020, by focusing on graphs of bounded mim-width. We study which restrictions on a locally checkable problem are necessary in order to be able to solve it efficiently on graphs of bounded mim-width. To this end, we introduce the concept of d-stability of a check function. The related locally checkable problems contain large classes of problems, among which we can mention, for example, LCVP problems. We give an algorithm showing that these problems are XP when parameterized by the mim-width of a given binary decomposition tree of the input graph , that is, that they can be solved in polynomial time given a binary decomposition tree of bounded mim-width. We explore the relation between d-stable locally checkable problems and the recently introduced DN logic (Bergougnoux, Dreier and Jaffke, 2022), and show that both frameworks model the same family of problems. We include a list of concrete examples of d-stable locally checkable problems whose complexity on graphs of bounded mim-width was open so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.