Abstract

We consider non-local elliptic operators with kernel K ( y ) = a ( y ) / | y | d + σ , where 0 < σ < 2 is a constant and a is a bounded measurable function. By using a purely analytic method, we prove the continuity of the non-local operator L from the Bessel potential space H p σ to L p , and the unique strong solvability of the corresponding non-local elliptic equations in L p spaces. As a byproduct, we also obtain interior L p -estimates. The novelty of our results is that the function a is not necessarily to be homogeneous, regular, or symmetric. An application of our result is the uniqueness for the martingale problem associated to the operator L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.