Abstract

For flow-enhanced crystallization in fiber spinning, the viscoelastic two-phase fiber models by Doufas et al. (2000) and Shrikhande et al. (2006) are state of the art. However, the boundary conditions associated to the onset of crystallization are still under discussion, as their choice might cause artificial boundary layers and numerical difficulties. In this paper we show that the model class of ordinary differential equations is singularly perturbed in a small parameter belonging to the semi-crystalline relaxation time and derive asymptotically justified boundary conditions. Their effect on the overall solution behavior is restricted to a small region near the onset of crystallization. But their impact on the performance of the numerical solvers is huge, since artificial layering, ambiguities and parameter tunings are avoided. The numerics becomes fast and robust and opens the field for simulation-based process design and material optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.