Abstract

We introduce notions of suspension and flow equivalence on one-sided topological Markov shifts, which we call one-sided suspension and one-sided flow equivalence, respectively. We prove that one-sided flow equivalence is equivalent to continuous orbit equivalence on one-sided topological Markov shifts. We also show that the zeta function of the flow on a one-sided suspension is a dynamical zeta function with some potential function and that the set of certain dynamical zeta functions is invariant under one-sided flow equivalence of topological Markov shifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.