Abstract

The main contribution of this paper is the precise numerical identification of a model set of parameters for a floating object/container system which admits three distinct equilibrium configurations, two of which are local energy minimizers among pseudo-equilibrium configurations. This numerical result strongly suggests the existence of a physical system in which a circular object can be observed to float in a centrally symmetric position in two geometrically distinct configurations, i.e., at two different heights. Thus, the general dependence of observable stable equilibria on the physical parameters of the problem is both shown to be much more complicated than originally anticipated and likely to depend on additional information, e.g., the initial positioning of the floating object. We show the existence of at least one equilibrium configuration in any situation which the density of the floating object is less than that of the liquid bath. We also give a collection of conditions under which all equilibr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.