Abstract

In this paper, we study the structure of the fixed point sets of noncommutative self maps of the free ball. We show that for such a map that fixes the origin the fixed point set on every level is the intersection of the ball with a linear subspace. We provide an application for the completely isometric isomorphism problem of multiplier algebras of noncommutative complete Pick spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.