Abstract
In 1973, Macbeath found a general formula for the number of points fixed by an arbitrary orientation preserving automorphism of a Riemann surface X. It was given in terms of a group G of conformal automorphisms of X and the ramification data of the covering X --> X/G, which corresponds to the so called universal covering transformation group. In these terms, for the case of a cyclic group of automorphisms of an unbordered non-orientable Klein surface, the formula was given later by Izquierdo and Singerman and here we find formulas valid for an arbitrary (finite) group G of automorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.