Abstract

The string landscape satisfies interesting finiteness properties imposed by supersymmetry and string-theoretical consistency conditions. We study N=1 supersymmetric compactifications of Type IIB string theory on smooth elliptically fibered Calabi-Yau threefolds at large volume with magnetized D9-branes and D5-branes. We prove that supersymmetry and tadpole cancellation conditions imply that there is a finite number of such configurations. In particular, we derive an explicitly computable bound on the number of magnetic flux quanta, as well as the number of D5-branes, which is independent of the continuous moduli of the setup. The proof applies if a number of easy to check geometric conditions of the twofold base are met. We show that these geometric conditions are satisfied for the almost Fano twofold bases given by each toric variety associated to a reflexive two-dimensional polytope as well as by the generic del Pezzo surfaces dP_n with n=0,...,8. Physically, this finiteness proof shows that there exist a finite collection of four-dimensional gauge groups and chiral matter spectra in the 4D supergravity theories realized by these compactifications. As a by-product we explicitly construct all generators of the Kaehler cones of dP_n and work out their relation to representation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.