Abstract

Cauchy polynomials are also called Bernoulli polynomials of the second kind and these polynomials are very important to study mathematical physics. D. S. Kim et al. have studied some properties of Bernoulli polynomials of the second kind associated with special polynomials arising from umbral calculus. T. Kim introduced the degenerate Cauchy numbers and polynomials which are derived from the degenerate function <TEX>$e^t$</TEX>. Recently J. Jeong, S. H. Rim and B. M. Kim studied on finite times degenerate Cauchy numbers and polynomials. In this paper we consider finite times degenerate higher-order Cauchy numbers and polynomials, and give some identities and properties of these polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.