Abstract

The paper studies the possible blowup of the total variation for entropy weak solutions of the p-system, modeling isentropic gas dynamics. It is assumed that the density remains uniformly positive, while the initial data can have arbitrarily large total variation (measured in terms of Riemann invariants). Two main results are proved. (I) If the total variation blows up in finite time, then the solution must contain an infinite number of large shocks in a neighborhood of some point in the t-x plane. (II) Piecewise smooth approximate solutions can be constructed whose total variation blows up in finite time. For these solutions the strength of waves emerging from each interaction is exact, while rarefaction waves satisfy the natural decay estimates stemming from the assumption of genuine nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.