Abstract
We prove that for any finite Thurston-type ordering $<_{T}$ on the braid group\ $B_{n}$, the restriction to the positive braid monoid $(B_{n}^{+},<_{T})$ is a\ well-ordered set of order type $\omega^{\omega^{n-2}}$. The proof uses a combi\ natorial description of the ordering $<_{T}$. Our combinatorial description is \ based on a new normal form for positive braids which we call the $\C$-normal fo\ rm. It can be seen as a generalization of Burckel's normal form and Dehornoy's \ $\Phi$-normal form (alternating normal form).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.