Abstract

This paper is devoted to investigating the relation between Hadamard-type fractional derivatives and finite part integrals in Hadamard sense; that is to say, the Hadamard-type fractional derivative of a given function can be expressed by the finite part integral of a strongly singular integral, which actually does not exist. Besides, our results also cover some fundamental properties on absolutely continuous functions, and the logarithmic series expansion formulas at the right end point of interval for functions in certain absolutely continuous spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.