Abstract
Let G be a finite group andA be a normal subgroup ofG. We denote by ncc(A) the number ofG-conjugacy classes ofA andA is calledn-decomposable, if ncc(A)= n. SetK G = {ncc(A)¦A ⊲ G}. LetX be a non-empty subset of positive integers. A groupG is calledX-decomposable, ifK G =X. Ashrafi and his co-authors [1-5] have characterized theX-decomposable non-perfect finite groups forX = {1, n} andn ≤ 10. In this paper, we continue this problem and investigate the structure ofX-decomposable non-perfect finite groups, forX = {1, 2, 3}. We prove that such a group is isomorphic to Z6, D8, Q8, S4, SmallGroup(20, 3), SmallGroup(24, 3), where SmallGroup(m, n) denotes the mth group of ordern in the small group library of GAP [11].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.