Abstract

This paper focuses on the convergence of a class of collocation methods for Volterra integral equations of the second kind with highly oscillatory Bessel functions. Compared to existing theoretical results, sharper frequency-related convergence rates of these methods are established by exploring the asymptotic expansions of solutions and solving error equations. Theoretical results in this paper show the direct Filon method and continuous linear collocation method share the same convergence rate. Both of them admit a better convergence rate compared to the piecewise constant collocation method in solving Volterra integral equations with highly oscillatory Bessel kernels. These results are verified by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.