Abstract

If $n$ is a positive integer, write $F_n$ for the $n$th Fibonacci number, and $\omega(n)$ for the number of distinct prime divisors of $n$. We give a description of Fibonacci numbers satisfying $\omega(F_n) \leq 2$. Moreover, we prove that the inequality $\omega(F_n) \geq (\log n)^{\log 2 + o(1)}$ holds for almost all $n$. We conjecture that $\omega(F_n) \gg \log n$ for composite $n$, and give a heuristic argument in support of this conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.