Abstract
Denote by a non-trivial primitive solution of Fermat’s equation (p prime).We introduce, for the first time, what we call Fermat principal divisors of the triple defined as follows. , and . We show that it is possible to express a,b and c as function of the Fermat principal divisors. Denote by the set of possible non-trivial solutions of the Diophantine equation . And, let (p prime). We prove that, in the first case of Fermat’s theorem, one has . In the second case of Fermat’s theorem, we show that , ,. Furthermore, we have implemented a python program to calculate the Fermat divisors of Pythagoreans triples. The results of this program, confirm the model used. We now have an effective tool to directly process Diophantine equations and that of Fermat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.