Abstract

Recent studies have investigated the possibilities of proactively detecting the high-profile false data injection (FDI) attacks on power grid state estimation by using the distributed flexible ac transmission system (D-FACTS) devices, termed as proactive false data detection (PFDD) approach. However, the feasibility and limitations of such an approach have not been systematically studied in the existing literature. In this paper, we explore the feasibility and limitations of adopting the PFDD approach to thwart FDI attacks on power grid state estimation. Specifically, we thoroughly study the feasibility of using PFDD to detect FDI attacks by considering single-bus, uncoordinated multiple-bus, and coordinated multiple-bus FDI attacks, respectively. We prove that PFDD can detect all these three types of FDI attacks targeted on buses or super-buses with degrees larger than 1, if and only if the deployment of D-FACTS devices covers branches at least containing a spanning tree of the grid graph. The minimum efforts required for activating D-FACTS devices to detect each type of FDI attacks are, respectively, evaluated. In addition, we also discuss the limitations of this approach; it is strictly proved that PFDD is not able to detect FDI attacks targeted on buses or super-buses with degrees equalling 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.