Abstract

The Earth’s magnetosphere responds to the external changes of interplanetary magnetic field and solar wind conditions showing a multiscale dynamics, manifesting in the occurrence of fluctuations over a very wide range of timescales. Here, using an approach based on a Langevin/Fokker-Planck description we investigate the nature of the fast (short-) and slow (long-timescale) fluctuations of SYM-H index during geomagnetic storms. The results point towards a different origin of the fast (τ < 200 min) and slow (τ > 200 min) fluctuations, which are characterized by state functions of different nature. In detail, the state function associated with the slow dynamics shows the evidence of the occurrence of first-order-like topological phase transition during the different phases of a geomagnetic storm, while the fast dynamics seems to be characterized by a quasi-invariant quadratic state function. A modeling in terms of stochastic Langevin equation is discussed and the relevance of our results in the framework of Space Weather studies is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.