Abstract

The Earth’s magnetosphere responds to the external changes of interplanetary magnetic field and solar wind conditions showing a multiscale dynamics, manifesting in the occurrence of fluctuations over a very wide range of timescales. Here, using an approach based on a Langevin/Fokker-Planck description we investigate the nature of the fast (short-) and slow (long-timescale) fluctuations of SYM-H index during geomagnetic storms. The results point towards a different origin of the fast (τ < 200 min) and slow (τ > 200 min) fluctuations, which are characterized by state functions of different nature. In detail, the state function associated with the slow dynamics shows the evidence of the occurrence of first-order-like topological phase transition during the different phases of a geomagnetic storm, while the fast dynamics seems to be characterized by a quasi-invariant quadratic state function. A modeling in terms of stochastic Langevin equation is discussed and the relevance of our results in the framework of Space Weather studies is outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.