Abstract

A family consisting of quadrature formulas which are exact for all polynomials of order ⩽5 is studied. Changing the coefficients, a second family of quadrature formulas, with the degree of exactness higher than that of the formulas from the first family, is produced. These formulas contain values of the first derivative at the end points of the interval and are sometimes called “corrected”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.