Abstract

We study the stability of a compact Lagrangian submanifold of a symplectic manifold under perturbation of the symplectic structure. If X is a compact manifold and the ω t are cohomologous symplectic forms on X, then by a well-known theorem of Moser there exists a family Φ t of diffeomorphisms of X such that ω t =Φ t *(ω0). If L⊂X is a Lagrangian submanifold for (X,ω0), L t =Φ t -1(L) is thus a Lagrangian submanifold for (X,ω t ). Here we show that if we simply assume that L is compact and ω t | L is exact for every t, a family L t as above still exists, for sufficiently small t. Similar results are proved concerning the stability of special Lagrangian and Bohr–Sommerfeld special Lagrangian submanifolds, under perturbation of the ambient Calabi–Yau structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.