Abstract
We study fair allocation of indivisible goods among additive agents with feasibility constraints. In these settings, every agent is restricted to get a bundle among a specified set of feasible bundles. Such scenarios have been of great interest to the AI community due to their applicability to real-world problems. Following some impossibility results, we restrict attention to matroid feasibility constraints that capture natural scenarios, such as the allocation of shifts to medical doctors and the allocation of conference papers to referees. We focus on the common fairness notion of envy-freeness up to one good (EF1). Previous algorithms for finding EF1 allocations are either restricted to agents with identical feasibility constraints or allow free disposal of items. An open problem is the existence of EF1 complete allocations among agents who differ both in their valuations and in their feasibility constraints. In this work, we make progress on this problem by providing positive and negative results for several matroid and valuation types. Among other results, we devise polynomial-time algorithms for finding EF1 allocations in the following settings: (i) n agents with heterogeneous (non-identical) binary valuations and partition matroids with heterogeneous capacities; (ii) two agents with heterogeneous additive valuations and partition matroids with heterogeneous capacities; and (iii) three agents with heterogeneous binary valuations and identical base-orderable matroid constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.