Abstract

AbstractWe consider the factorization properties of block monoids on $\mathbb{Z}_n$ determined by subsets of the form $S_a=\{\bar{1},\bar{a}\}$. We denote such a block monoid by $\mathcal{B}_a(n)$. In §2, we provide a method based on the division algorithm for determining the irreducible elements of $\mathcal{B}_a(n)$. Section 3 offers a method to determine the elasticity of $\mathcal{B}_a(n)$ based solely on the cross number. Section 4 applies the results of §3 to investigate the complete set of elasticities of Krull monoids with divisor class group $\mathbb{Z}_n$.AMS 2000 Mathematics subject classification: Primary 20M14; 20D60; 13F05

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.