Abstract
It is shown that each finite inverse monoid admits a finite F-inverse cover if and only if the same is true for each finite combinatorial strict inverse semigroup with an identity adjoined if and only if the same is true for the Margolis–Meakin expansion M ( H ) of each finite elementary abelian p-group H for some prime p. Additional equivalent conditions are given in terms of the existence of locally finite varieties of groups having certain properties. Ultimately, the problem of whether each finite inverse monoid admits a finite F-inverse cover, is reduced to a question concerning the Kostrikin–Zelmanov varieties K n of all locally finite groups of exponent dividing n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.