Abstract

In this paper, extreme learning machine (ELM) for e-insensitive error loss function-based regression problem formulated in 2-norm as an unconstrained optimization problem in primal variables is proposed. Since the objective function of this unconstrained optimization problem is not twice differentiable, the popular generalized Hessian matrix and smoothing approaches are considered which lead to optimization problems whose solutions are determined using fast Newton–Armijo algorithm. The main advantage of the algorithm is that at each iteration, a system of linear equations is solved. By performing numerical experiments on a number of interesting synthetic and real-world datasets, the results of the proposed method are compared with that of ELM using additive and radial basis function hidden nodes and of support vector regression (SVR) using Gaussian kernel. Similar or better generalization performance of the proposed method on the test data in comparable computational time over ELM and SVR clearly illustrates its efficiency and applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.