Abstract
Bollobás and Scott proved that if the weighted outdegree of every vertex of an edge-weighted digraph is at least 1, then the digraph contains a (directed) path of weight at least 1. In this note we characterize the extremal weighted digraphs with no heavy paths. Our result extends a corresponding theorem of Bondy and Fan on weighted graphs. We also give examples to show that a result of Bondy and Fan on the existence of heavy paths connecting two given vertices in a 2-connected weighted graph does not extend to 2-connected weighted digraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.