Abstract
Options are financial instruments with a payoff depending on future states of the underlying asset. Therefore option markets contain information about expectations of the market participants about market conditions, e.g. current uncertainty on the market and corresponding risk. A standard measure of risk calculated from plain vanilla options is the implied volatility (IV). IV can be understood as an estimate of the volatility of returns in future period. Another concept based on the option markets is the state-price density (SPD) that is a density of the future states of the underlying asset. From raw data we can recover the IV function by nonparametric smoothing methods. Smoothed IV estimated by standard techniques may lead to a non-positive SPD which violates no arbitrage criteria. In this paper, we combine the IV smoothing with SPD estimation in order to correct these problems. We propose to use the local polynomial smoothing technique. The elegance of this approach is that it yields all quantities needed to calculate the corresponding SPD. Our approach operates only on the IVs--a major improvement comparing to the earlier multi-step approaches moving through the Black---Scholes formula from the prices to IVs and vice-versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.