Abstract

Developing aggregation operators for interval-valued hesitant fuzzy sets (IVHFSs) is a technological task we are faced with, because they are specifically important in many problems related to the fusion of interval-valued hesitant fuzzy information. This paper develops several novel kinds of power geometric operators, which are referred to as variable power geometric operators, and extends them to interval-valued hesitant fuzzy environments. A series of generalized interval-valued hesitant fuzzy power geometric (GIVHFG) operators are also proposed to aggregate the IVHFSs to model mandatory requirements. One of the important characteristics of these operators is that objective weights of input arguments are variable with the change of a non-negative parameter. By adjusting the exact value of the parameter, the influence caused by some “false” or “biased” arguments can be reduced. We demonstrate some desirable and useful properties of the proposed aggregation operators and utilize them to develop techniques for multiple criteria group decision making with IVHFSs considering the heterogeneous opinions among individual decision makers. Furthermore, we propose an entropy weights-based fitting approach for objectively obtaining the appropriate value of the parameter. Numerical examples are provided to illustrate the effectiveness of the proposed techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.