Abstract
For finite parameter spaces, among decision procedures with finite risk functions, a decision procedure is extended admissible if and only if it is Bayes. Various relaxations of this classical equivalence have been established for infinite parameter spaces, but these extensions are each subject to technical conditions that limit their applicability, especially to modern (semi and nonparametric) statistical problems. Using results in mathematical logic and nonstandard analysis, we extend this equivalence to arbitrary statistical decision problems: informally, we show that, among decision procedures with finite risk functions, a decision procedure is extended admissible if and only if it has infinitesimal excess Bayes risk. In contrast to existing results, our equivalence holds in complete generality, that is, without regularity conditions or restrictions on the model or loss function. We also derive a nonstandard analogue of Blyth’s method that yields sufficient conditions for admissibility, and apply the nonstandard theory to derive a purely standard theorem: when risk functions are continuous on a compact Hausdorff parameter space, a procedure is extended admissible if and only if it is Bayes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.