Abstract

A connected graph ? of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of ?. Furthermore, a connected graph ? of odd order is n1/2-extendable, if for every vertex v of ? the graph ? - v is n-extendable. It is proved that every connected Cayley graph of an abelian group of odd order which is not a cycle is 1 1/2-extendable. This result is then used to classify 2-extendable connected Cayley graphs of generalized dihedral groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.