Abstract
As it is known, the existence of the Wiener-Hopf factorization for a given matrix is a well-studied problem. Severe difficulties arise, however, when one needs to compute the factors approximately and obtain the partial indices. This problem is very important in various engineering applications and, therefore, remains to be subject of intensive investigations. In the present paper, we approximate a given matrix function and then explicitly factorize the approximation regardless of whether it has stable partial indices. For this reason, a technique developed in the Janashia-Lagvilava matrix spectral factorization method is applied. Numerical simulations illustrate our ideas in simple situations that demonstrate the potential of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.