Abstract
The Dirichlet problem for the Laplacian in a planar multiply connected interior domain bounded by smooth closed curves is considered in the case when the boundary data is piecewise continuous; i.e., it may have jumps in certain points of the boundary. It is assumed that the solution to the problem may not be continuous at the same points. The well-posed formulation of the problem is given, theorems on existence and uniqueness of a classical solution are proved, and the integral representation for a classical solution is obtained. The problem is reduced to a uniquely solvable Fredholm integral equation of the second kind and of index zero. It is shown that a weak solution to the problem does not exist typically, though the classical solution exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.