Abstract
Given an approximate solution to a nonlinear system of equations at which the Jacobi matrix is nonsingular, and given that the Jacobi matrix is continuous in a region about this approximate solution, a small box can be constructed about the approximate solution in which interval Newton methods can verify existence and uniqueness of an actual solution. Recently, we have shown how to verify existence and uniqueness, up to multiplicity, for solutions at which the Jacobi matrix is singular. We do this by efficient computation of the topological index over a small box containing the approximate solution. Since the topological index is defined and computable when the Jacobi matrix is not even defined at the solution, one may speculate that efficient algorithms can be devised for verification in this case, too. In this note, however, we discuss, through examples, key techniques underlying our simplification of the calculations that cannot necessarily be used when the function is non-smooth. We also present those parts of the theory that are valid in the non-smooth case, and suggest when degree computations involving non-smooth functions may be practical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.