Abstract
ABSTRACT We study a free boundary problem for the heat equation describing the propagation of laminar flames under certain geometric assumptions on the initial data. The problem arises as the limit of a singular perturbation problem, and generally no uniqueness of limit solutions can be expected. However, if the initial data is starshaped, we show that the limit solution is unique and coincides with the minimal classical supersolution. Under certain convexity assumption on the data, we prove first that the limit solution is a classical solution of the free boundary problem for a short time interval, and then that the solution, in fact, stays classical as long as it does not vanish identically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.