Abstract

LetEbe a compact set in thez-plane and letΩbe its complement with respect to the extendedz-plane. Suppose thatEis of capacity zero. ThenΩis a domain and we shall consider a single-valued meromorphic functionw=f(z) onΩwhich has an essential singularity at each point ofE. We shall say that a valuewis exceptional forf(z)at a point ζ ∈Eif there exists a neighborhood of C where the functionf(z)does not take this valuew.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.