Abstract
This paper introduces five characteristics of concave knapsack problem (CKP) instances that influence computational times of algorithms. A dataset, based on these characteristics, is randomly generated and made available online for future studies and comparison of computational times. In this study the dataset is used to compare the computational performance of two integer programming formulations and four algorithms to solve CKPs. A novel algorithm (BLU) that combines the logic of dynamic programming and the Karush-Kuhn-Tucker necessary conditions for the CKP is also introduced. The computational times for the two integer programming formulations were too long and were thus excluded from the statistical analysis. Analysis of the computational times shows that algorithms are sensitive to different characteristics. Any algorithm, depending on the settings of the five characteristics, could win in terms of average computational time, but BLU outperforms the other algorithms over the widest range of settings for these characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.