Abstract
A new design criterion based on the condition number of an information matrix is proposed to construct optimal designs for linear models, and the resulting designs are called K-optimal designs. The relationship between exact and asymptotic K-optimal designs is derived. Since it is usually hard to find exact optimal designs analytically, we apply a simulated annealing algorithm to compute K-optimal design points on continuous design spaces. Specific issues are addressed to make the algorithm effective. Through exact designs, we can examine some properties of the K-optimal designs such as symmetry and the number of support points. Examples and results are given for polynomial regression models and linear models for fractional factorial experiments. In addition, K-optimal designs are compared with A-optimal and D-optimal designs for polynomial regression models, showing that K-optimal designs are quite similar to A-optimal designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.