Abstract

The present article is concerned with the numerical implementation of the Hilbert uniqueness method for solving exact and approximate boundary controllability problems for the heat equation. Using convex duality, we reduce the solution of the boundary control problems to the solution of identification problems for the initial data of an adjoint heat equation. To solve these identification problems, we use a combination of finite difference methods for the time discretization, finite element methods for the space discretization, and of conjugate gradient and operator splitting methods for the iterative solution of the discrete control problems. We apply then the above methodology to the solution of exact and approximate boundary controllability test problems in two space dimensions. The numerical results validate the methods discussed in this article and clearly show the computational advantage of using second-order accurate time discretization methods to approximate the control problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.