Abstract

By a perturbation method two coupled nonlinear partial differential equations are derived, which describe nonlinear evolution of a three-dimensional surface gravity wave packet in a two-layer fluid, including the effect of its interaction with a long wavelength surface gravity wave and an internal wave. Both the cases h ⪡ L and h ⪢ L are considered, where L is the space scale length of variation of long waves and h is the total depth. Starting from these two coupled equations, balanced sets of nonlinear evolution equations in the lowest order both at nonresonance and at resonance are derived. From these equations modulational instability conditions are derived. Some of the results are shown graphically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.