Abstract

As an extension of pairwise meta-analysis of two treatments, network meta-analysis has recently attracted many researchers in evidence-based medicine because it simultaneously synthesizes both direct and indirect evidence from multiple treatments and thus facilitates better decision making. The Bayesian hierarchical model is a popular method to implement network meta-analysis, and it is generally considered more powerful than conventional pairwise meta-analysis, leading to more precise effect estimates with narrower credible intervals. However, the improvement of effect estimates produced by Bayesian network meta-analysis has never been studied theoretically. This article shows that such improvement depends highly on evidence cycles in the treatment network. When all treatment comparisons are assumed to have different heterogeneity variances, a network meta-analysis produces posterior distributions identical to separate pairwise meta-analyses for treatment comparisons that are not contained in any evidence cycles. However, this equivalence does not hold under the commonly-used assumption of a common heterogeneity variance for all comparisons. Simulations and a case study are used to illustrate the equivalence of the Bayesian network and pairwise meta-analyses in certain networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.